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Abst_ct

Pandlel computez systems m 8mons the most complex of man's cre-
ations, mald_ ,,_b_actory _ chszactezisation diflcult. De-

spite this complexity, there are strong, indeed, a/m_t irtesistlble, incen-

tives to quantify par.rid -y.tem _ _ a .insle mettle. The
fallacy lies in succumbhs| to such temptations. A complete perfonnance
characterisation requ/res not only ms sns/ys/s of the system's constituent

levels, it also requires both atatie and dlmamic characterhJations. Static

or ave_aze behsv/or analys_ may mask trans/ents that dramatically alter
system pedomumee.

Althoush the _ visual system is _kedly sdep¢ st/nterpret-

ins end identif3_S anomafies in fa/Je color data, the importance of dy-

namic, visas/ scientific da_ presentation ka. only recently been reco K-

nisei. Larse, complex pszallel syJte_, pose equsny vexins pe_orman_
interp_ta_oa problems. Data from hardware and software perforlnance
monitors must be presented in ways that emphsudse importan_ events

while elidin s irrelevan_ details. Design approaches and tool- for perfor-

mance visualisation are the subject of this paper.
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The purpose of computing is insight, not numbers.

Richard Hamming

I Introduction

The appearance of any new computer system raises many questions about its

performance, both in absolute terms and in comparison to other machines of

its class; parallel computer systems axe no exception. Unfortunately, parallel

computer systems are among the most complex of man's creations, makin 8 sat-
isfactory performance characterisation difficult. Despite this complexity, there

are strong, indeed, almost irresistible, incentives to quantify parallel system

performance using a single metric. The fallacy lies in succumbing to such temp-

tations. Just as it now is widely recognised that human intelJigence is not
subsumed by the spatial and verbal abilities measured by standard intelligence

tests, complete characterisation of parallel computer system performance en-

compasses more than operations executed per second.

Peak performance ratings in MIPS (milLions of instructions per second) or

MFLOPS (mill/ons of floating point operations per second) obscure the ira-

portuce of interacting perfoemance levela sad d!lnamic equilibeiur_ Repeated
studies have shown that a system's performance is maximized when the com-

ponents are balanced (i.e., the_e is no single system bottleneck) I5]. As an
example, optimizing the performance of message pmudng systems I17] requires

a judicious combination of node computation speed, message transmission la-

tency, and operating system software. High speed processors connected by high

latency communication links restrict the classes of algorithms that can be effi-

ciently supported.
A complete performance characterisation requires not only an analysis of

the system's constituent levels, it also requires both static and d_rnamic char-

acterilations. Static or average behavior analysis may mask transients that

dramatically alter system performance. By analogy, biological researchers have
long recogni,ed the importance of both in vitro sad in vivo measurements. Lab-

oratory measurements of isolated cells or biological molecules often differ from
similar measurements in natural environments.

The history of virtual memory rmeacch offers a classic example of transient

behavior and its importance. The slow drift model [4] predicted that program

reference locality changed slowly. Later, more detailed measurements showed

that reference localities change swiftly and catastrophically. Most page faults
sad associated overhead occur in small time intervals, and a phase-transition

model more accurately reflects observed behavior.

Performance measurements of high-speed computing systems can q.uickiy
generate vast quantities of numerical data. Indeed, recognition of the impor-

tance of virtual memory phase transitions was hampered by the volume of data
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generated during simulation and measurement; post-measurement data com-

pression yielded page fault rates, a static performance measure. However, phases

and transitions can be seen only by examining significant portions of the refer-

enee trace; this is best done via dynamic graphic displays.

Although the human visual system is remarkedly adept at interpreting and
identifying anomalies in false color data, the importance of visual scientific data

presentation has only recently been recognised [7]. Large, complex parallel
systems pose equally vexing performance inte_'etation problems. Data from

hardware and software performance monitors must be presented in ways that

emphasise important events while eliding irrelevant details.

In collaboration with the Center for Supereomputing Research and Devel-

opment at the University of Illinois, we are developing a suite of performance

visualisation tools. These tools and our design approach are the subject of this

paper. In §2 we examine the importance of performance levels and formalise
the empirical performance evaluation process. In _3 we discuss HyperViev, a

prototype that dynamically displays performance data obtained from hardware

measurement and simulation of message passin 8 systems. Techniques for vi-

sualising application performance are the subject of _4; linear progrsmming

[6] [19] is used as a test pr.oblem. Finally, _5 summarises our experience and
development plans,

2 Experimental Performance Analysis

As Figure I illustrates, there are four levels in the hierarchy of performance

measurements. The answer to the oft-asked question, "How fast is it?" de-

pends on the intended use of the performance data. At the lowest level lies the

performance of the hardware design. Determining this performance provides
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both a design validation and directives for system software design. Only by

understanding the strength, and weaknesses of the hardware can system soft-
ware designers develop an implementation and user interface that msadmizes
the fzaction of the raw hardware performance available to the end user. As

an example, consider a hypothetical hypezeube operating system that provides

dynmnic task m/station to balance workloads. To meet these goals, it must be

possible to rapidly transmit small status messsses. It is fruitless to design such

a system if the underlying hs_lware provides only high-latency message trans-
mission. Given some characteri=ation of the balance between processing power

and interprocessor communication resultin 8 fzom the system software, users can

deveJop algorithms that are best suited to the parallel system. Finally, the best

mix of key algorithms will maximize the performance of user applications.

Regardless of the system level, performance characterisation requires specifi-
cation of the desized measurements, instrumentation and data collection mech-

anisms, and data reduction and display; see Fignze 2. I Althoush it is clear that

a pszallel computer system is a gestalt whose performance is inextricably tied to

the performance of its constituent hardware and software levels, it is less clear

that performance iust_mentation and data collection techniques for one level,

or even one system, are rarely applicable to other systems or other levels. As an

example, Table I shows a subset of the important performance measurements

for three levels -- hardware, system software, and alSorithm and three systems

the Cray X/MP, the Uuiversity of Illinois Cedar system 113], and the Intel

iPSC hypercube {16].

The diversity of underlying technology and system architecture makes it

impossible to develop s single set of performance instrumentation techniques.

Memory bank conflicts on the Czay X/MP have no analo8 on the distributed

memory Intel iPSC. Moreover, the event time scales differ by six orders of

ZBy analogy with news reporting, _W_&t do I want?" "How do I get it? n and "How can I

see it?"



Level

Hardware

CmV X/MP

vector startup

memory

conflicts

Illinois Cedar

network contention

"vector/cache

interaction

Intel iPSC

processor speed

communication

latency and

bandwidth

Software compiler compiler OS support

Algorithm shared memory accessvectodzation communication pstteru

Table 1: Performance Level Comparison

magnitude. Similarly, the shared memory access patterns of Cedar application
algorithms may cause interconnection network conflicts, but these patterns are

not predictors of performance degradation due to network contention. Although

it is impossible to develop a single performance instrumentation mechanism
applicable to all levels, mechanizma for specification of noteworthy performance

events and their presentation are largely system independent. 2

At all performance levels there exists a minimal set of required events (e.g.,

counts and times). Capture of these events should be enabled by sisnals to a

hardware monitor, operating system calls, or flags to a compiler preprocessor.

In addition to standard events, certain others must be enabled selectively, either
to minimise the performance perturbations of instrumentation or to reduce the

data volume to tractable levels. Ideally, a standard user interface should permit

event specification regardless of the event type or the performance level.

Despite the diverse instrumentation events of dfffering levels and systems,

the performance measures can be presented using a small number of display
types (e.8., bat and strip chs_ts, three-dimensional plots, and state transition

diagrams). These graphical displays are the subject of the remainder of this

paper.

3 HyperView: A Hypercube Visualization Tool

In collaboration with the Center for Supercomputin 8 Research and Develop-

ment, we have designed and implemented ilyperView, a 9rototype performance
visualisation tool for distributed memory parallel procG_mrs configured as hy-

pereubes. HypezView dynamically displays architectural and system activity

via a multiplicity of system views. Detailed performance measurements also are

2The e_enta vary but the speci/_cstion s_d d/Ip]sy m.¢chan_m need not.



provided via standard statistical displays.

HyperVlev was inspired by SeecuSe [3], a hypercube visualisation system
built for the SunView s window environment. A/though many of the HyperView

displays were borrowed from Seecube, the implementation is based on the X

window environment [18] and the user interface libraries provided by the Faust

parallel programming environment bein 8 developed at the University of Illi-
nois Center for Supereomputing Research and Development [10] [11] [12]. The

portabi/ity provided by X permits use of HyperViev in a variety of workstation
environments. Because X supports a c]]ent-server paradigm, the data analy-

sis and display portions of HyperVlew are decoupled, potentially executing on
different systems. Tkis decouplins not only makes the visualisation portions

independent of messs45e passing hardware and system software, it also is cru-

cial if real-time performance display and dynamic system reconfiguration are to

be supported. Thus, HyperViev eontnins three cooperating modules -- data

capture, state analysis, and visualisation.

3.1 Data Capture

The HyperVlev visualisation component accepts event traces generated by the

processors of a message passing system. Because the data capture is decoupled
from visualisation, the event trace can be generated via simulation, permitting

study of new message pusing arch/tectures, or from program execution. At

present, the HyperVlew visualisation is driven by data obtained from simula-
tion of communication hardware for diJYerent message passing paradigms 19],

including store-and-forward message switching, circuit switching, staged circuit

switching, and wormhole circuit switching. Our experience hss shown that

visual comparison of system dynamics quickly reveals differences in communi-

cation paradigms.
When an event is detected by the performance instrumentation, an event

identifier, a timestnmp, and any additional event data are written to a trace

buffer. For our message passing simulations, we instrumented the simulator to

record the following information about message events at each hypercube node.

The following events suffice to display message passing activity for fixed-path

and adaptive variants of both circuit and store-and-forward message switching.

i <time>

m <time>

q <t_e>
Q <t_e>
• <_lae>

v <_Ime>

t <tiae>

T <1:ime>

<nodes> <s_z_>

<meg id> <_:om> <1:o> <size>

<meg id> <at>

<asg id> <a_>

<meg id> <a_>

<mmg Id> <_zon> <_o> <l_J_k>

<meg Id>

<mag Id>

3SunView is • trademark of Sun Microsystems.

Ini_ial message

Create message

Enqueue message

Dequene message
Circttit ee_ablishmen_

¥isi_ node via link

Begin message transmission

End nessage transmission



V <time> <meg id> <fron> <_o> <link> Delete link between nodes

E <_ime> <nsg id> <froa> <to> Circuit te_n£na$ion

M <t_e> <as 8 id> Message delivery

For both circuit and packet switching, messages may require severs/trans-

missions and may cross multiple communication Links to reach their fins/desti-

nation. Hence, the events recorded by a single hypercube node are insufficient

to reconstruct the history of a message. Thus, the/rein and to arguments in

the message creation event represent the point of message origination and the

final destination. Because we are studying routing pamdi_ns that can choose
one of many paths to the destination node, ]ink traverse/information must be

saved to reconstruct the routing path.

A/though the instrumentation events just described suite to display com-
mun/cation traffic and queueing delays, other events are needed to display sys-

tem software and application behavior. Thus, we are developing software and

hardware instrumentation for an Intel iPSC/2 hypercube that will permit near

real-time data capture of user, system and hardware events, including support

for local event bu_ering, globs/timestamp synchronisation, and trace process-

ing; see _5 for additional details.

8.2 State Analysis

In s distributed memory parallel system such as a hypercube, each node must

record events based only on local knowledge; the absence of global memory

precludes data sharing with the granularity necessary to dynamically maintain
a consistent, global state. Moreover, the nodes of many distributed memory

systems are individually clocked, the clocks often are not synchronised, and the

clocks may tick at di_erent rates. Thus, the event trace at best defines a partial

time order, and the timestsmps may be logically inconsistent with the logical
order of events.

To recover global state during trace analysis, the trace timestamps must be

reconciled and enough event data must be saved to correlate distributed events.
The ans/ys/s requires interpreting each event in sequence and incrementally

modifying the current system state; for complete details see [3].

8.8 Performance Visualization

The HyperVlew user interface permits simultaneous display of the dynamic sys-

tern state via a variety of diITering v_ewm. Each view emphasises certain system

aspects (e.g., the network topology, the multiplicity of partially overlapping

paths from a source to a destination node, or queues of waiting messages). Each

view provides a di/_erent insight; collectively they convey system dynamics.

A/though Hamming's dictum applies, numbers are often necessary and im-

portant. In addition to graph/ca/displays, HyperView provides statistical dis-
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plays at both macroscopic levels (e.g., number of messqes transmitted) and

microscopic levels (e.g., link utilisation). Finally, HyperVlew permits selective
display of message traffic and statistics, permittins the performance analyst to

isolate anomalous behav/or for further study.

Because HTperVleg is a d_/namsc performance visualisation system, much is

lost in description of static, monochrome imasa. Despite these Limitations, we

discuss HyporViav us a performance analyst might encounter it, beginning with

the top-level user interface shown in Fisure 3. User menus s_re shown at the top

of the screen. Pu/ling down the T_aee menu lists the Description, Execution
Control, and Statistics items shown in Figure 4.

3.3.1 Trace Description

In the Trace Description window, a performance analyst can select, by clicking
the mouse on the Trace F;/e item, a trace file that contains the event informs-

tion captured durin s system execution. A dialogue box (not shown) will pop

up request/n s the user to enter the trace file name. After read/aS the trace

file, H]rperViev begins the state analysis needed to recover the time varying

global state of the message pusin s system. Durin S state analysis, HTptrV_.ev

computes the number of events, messsses and bytes transmitted. Throughout

the visualisation session, these statistics can be viewed by selecting the Trace

Description menu.

3.3.2 Execution Control

As the name suggests, the Execution Control window controls updates to the

graphical and statistical displays. During state analysis, HyperV£ev identifies

$
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a series of global/y consistent d/splay points. During updates of the trace dis-

play, SyperVleg moves between these display points. The current point can

be marked by a position in time and/or location in the event trace. Thus,

the performance analyst can select a curzent display time either by clicking the

mouse on Current Frame Time and enterin$ a time, or by clicking the mouse

somewhere within the Frame Time slider bar. Event trace positions s_e selected

similarly. When a new time or event is selected, HTperViev moves to the next
consistent system state and its correspondins display. Because the event trace

is processed a poatet'/o_ the performance analyst can move both forward and
backward in time. 4

A Frame in HyparVln corresponds to a displayed system state. The user

can chahse three aspects of frame display -- mode, rate, and state di_'erentis/.

Frames can be d/splayed either in sin_e-step mode or continuously. If the mouse

is clicked on the SZNGT.E STEP button, the user must explicitly request display
of the next frame. Conversely, COzVTI/_'U'O_'S mode automstic-lly advances to

the next fra_te specified by the frame rate and di_erential controls.

Via the Frame Rate control, the performance snsIy_ can adjust the interval

between display of new frames. The third aspect of frame control is the change

in system state, in events or time, between successive, displayed frmunes. This
state dii_erence is the minimum of the specified number of Events per Frame and

4§5 discusses both the mmA:Ivantss,emmsnddlmsdvsntmaKesof time independene browsln s.
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thenumberof Clock Ticks per Frame. By sdjustins the display mode, _sme

rate, and state differential, the performance analyst can study gross behavior,

exemlining a small subset of all states, or examine the trace event by event.

3.3.3 Global Star/sties

The Star/st/ca window shows the global system state, both cumulative message

statistics and cuM_en£ node and llnk activity. Because the performance analyst

can browse the trace, cumulative statistics are not monotonic -- they reflect

performance data relative to the current trace state.

3.3.4 System Displays

Figure 5 shows the menu of dynamic system views provided by HyparViH.

Figures 6 and 7 show the CUBE, FFT, PASCAL, and QUEUE views. Each dis-
play g/yes a different v/ew of the hype_ube that shows current system activity

as highlighted nodes and links. Each view emphasises certain system aspects

(e.g., the network topolosy, the multiplicity of partially overinpping paths from

s source to a destination node, or queues of waiting messages). For example,

the CUBE view is the "natural" multi-dimensional representation of a hyper-

cube. In contrsst, the FFT view emphssises message routing paths. The GRAY
CODE view, not shown, emphasises subcube communication -- communication

links connecting the two D - l-dimensional subcubes of a D-dimensional by-

percube appear as parallel lines [3]. The PASCAL vie.w reflects the logarithmic

combining (e.g., global minimisation) when losicsd trees are embedded in the

hypercube topology [19]. The QUSUE view in Figure T shows the instantaneous

state of the messsge queues at each node. Each message awaiting transmission
is shown as a small box. Communication trandents appear as bursts of en-

I0



queuedmessages. Similarly, the effects of differing communication paradigms

(e.g., store-and-forward message switching and circuit switching) appear as dif-

ferences in mean queue sise.

In all views, colors emphasise activity -- links change color when messages

are sent, nodes flash when processing messages. Moreover, each system view

supports pull-down menus for inquiries about nodes, links, messages, and cir-

cuits. In each topological view (i.e., CUBE, FFT, and PASCAL), unwanted
detail can be elided via the Node and Link menus. For example, display of

any combination of transmitting, active, or receiving nodes and links can be

disabled. Figure 8 shows the L/nk menu; the Node menu is similar. A//, Active

and Ttansmittin 8 select the displayed link states.

3.3.5 Message and Circuit T_rac]_g

In addition to elision of unwanted node and link details, HyperView supports

rneasage tvacldng and ciecait tvacidng, s After identifying source and destina-

tion nodes, only those messages in transit between the specified nodes are dis-
played. Figure 9 illustrates message and circuit tracking in s system with circuit

switched communication. In the figure, nodes 0 and 20 have been selected for

circuit tracking and message tracking, respectively. Node 0 is transmitting a

message to node 15 along the path shown. The intermediate nodes on the path
are not active because only circuit connections have been established there.

Concurrently, node 0 is sending a message to node 20, and node 20 is sending a

message to node 29.

Message and circuit tracking have proven invaluable when comparing com-

munication paradigms. By eliding extraneous detail, the dynamics of circuit

establishment in both fixed aad adaptive routing paradigms can be easily com-

pa_ed.

4 A.ppHcation Performance Displays

Performance visualisation at both the hardware and system software levels pro-

vides important insight for syatem design and analysis. And because system per-

formance is manifest in the application software executed during performance

analysis, system level performance visualisation indirectly provides application

performance insight. However, imdght from visualisation of system performance

must be coupled with insight from application performance visualisation to un-
derstand the interactions of different performance levels. To il/nstrate these

interactions and the importance of integrated visualisation tools, we use a par-

allel implementation of the simplex linear optimisation algorithm [6] I19] as

an example. Like many parallel algorithms, the performance of the simplex

SThe e.hoi©eand semantics depend on the undertyin s hLrdwsre ¢omm_u_cation psradlgm.
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method varies greatly with input data, and these variations "are intimately re-
fated to both the algorithm and its interaction with the hardware and system
software.

4.1 Linear Optimization: An Example

Large, sparse, linear systems of equations arise frequently when constructing

mathematics/models of natural phenomena. Most often, these linear systems

are fully constrs/ned and can be solved via a variety of di:ect or iterative tech-

uiques. However, one important problem class requires so|utions to undercon-

str,,/ned linear systems that maximise some objective function. These linear

optimis, ation problems often contain hundreds of equations with thousands of

variables. Mathematic-ny, this can be stated as:

Minimize : c;rz

Subject to: A2 = b

b>O

z>_O

Here, cy is an n vector of variable coefficients that defines the objective function

(i.e., the function being minimized). For a maximization problem, the negative

14
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of the objective function can be minimised. The objective function can thus be

viewed as a cost function, where the goal is to minimize total cost. The Tn × n

linear system Az -- b defines the linear constra/nts on the objective function z.

Each of the m rows of the matrix A defines a constraint on the n variables of

the objective function.

The optimisation problem arises because the linear system Az = b is under-

constrained (i.e., rn is smaller than _, and the matrix A contains many more

columns (variables) than rows (constralntsl). s Consequently, there are many

possible z vectors that satisfy the system Az = b. A fundamental theorem of

linear programming states that an optimal solution, if it exists, occurs when

n - m elements of z are |ero (i.e., when there are precisely m non-zero elements

of z). This corresponds to the solution of an m x m linear system, the _zJiJ,

obtained by selecting m of the _ columns of the matrix A.

Clearly, exhaustive solution of the (m_) possible linear systems is not fea-

sible. The simplex method is a search algorithm that decreases the value of

the objective function at each iteration by selecting a non-sero element of z, a

so-ca/led/_c variable, and replacing the corresponding column of .4 with an-

other column. The simplex method provides a systematic way of moving from

one basic feasible solution (i.e., one satisfying the constraints) to another. This

systematic movement, called pivoting, must

6See Fisure 11 For an exsmple.

15
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Figure 10: Data Placement for Simplex Row and Column Partitions

• identify a new basis column that decreases the objective (cost) function

value,

• identify the column to remove from the basis that maxim/sea the decrease

in the objective function value while still satisfyin 8 the constraints, and

• replace the old basis column with the new one.

These transformations are realised by standard techniques from numerical linear

algebra (i.e., Gauss-Jordan elimination).

4.2 Parallel Simplex Variants

In message passing architectures, interprocessor communication is much more
expensive than local memory access. Hence, many algorithm implementation

details are constrained siren the mapping of data to processors. The simplex

algorithm shares similar characteristics with solution of linear systems, matrix
multiplication, and other common matrix operations. Previous work on dis-

tributed matrix alSorithms has advocated row or column partitioning of matri-

ces [1] [8] [15]. We have considered similar schemes for distributin 8 the matrix

of constraints across the nodes of a hypercube [19].

In the column partitioned method, shown in Figure 10, complete columns

are divided equally amon 8 the processors. To identify the column to enter the
basis, each hype_ube node must first find the local minimum of the objective

values for those columns in its local memory, then cooperate with other nodes

to identify and distribute the identity of the column containing the minimum

objective vulue. Conversely, the s_ngie node containin 8 the pivot column must

identify the column to leave the basis. Thus, partitioning the matrix by columns

creates both parallel and sequential computation phases.

In the row partitioned strategy, complete rows of the matrix are divided

equally among the processors. As Table 2 shows, this approach also creates

16



Partition

Column

Row

Bnte_ng BaJis Column

Pszsllel computation

Global _ation

Parallel computation

Global _ation

Ddpar_n9 Baa_ Column

Sequential computation

Parallel computation

Global marion

Gaua#.Jordon EliminatioT

Cohmm global send

Psrs_lel computation

Row global send

Parallel computation

Table 2: Hypercube Simplex Variations

both parallel and sequential computation phases. ? Despite the similarities sug-

gested by Table 2, the performance of simplex algorithms based on row and

column data partitions can be strikingly different. Why? Distributed linear

systems solvers process n × n matrices. The constraint matrices processed by
the simplex method contain many fewer rows than columns. Moreover, the ratio

of the number of rows to columns can vary dramatically. This variance, coupled

with the dit_erences in matrix sparsity, is manifest in the relative costs of com-

munication, sequential computation, and parallel computation. Hence, neither

row nor column partitioning is uniformly superior. To understand the dynamics

of algorithm interaction with matrix structure, application visualization tools

are necess_y.

4.3 Simplex Performance Visualization
p

Earlier study [19] suggested that, despite variations in matrix structure, row

partitioned simplex implementations often yielded better performance. How-

ever, counterexamples exist; Figure 11 shows the non-zero matrix structure of

one such problem. Although the 7:1 ratio of columns to rows suggests the

reason that column partitioning is preferable, the details are best grasped via
visualization.

Figures 12 and 13 show four views of the number of messages sent between
tasks of the row partitioned simplex algorithm on a 16 node l.ntel iPSC/2 hy-

percube. Recall that in a D-dlmensional hypercube, a node with address n is

directly connected only to those other nodes with addresses whose binary expan-

sions differ grom n in exactly one bit. Although messages must cross multiple

communication links to reach some nodes, the maximum distance between any

two nodes is D. When exploring performance at the hardware and system

software levels, understandin$ node connectivity is crucial. However, at the ap-
plication level, messages are exchanged by tasks, not hypereube nodes. Hence,

rI.n reality, there are many subvari,tlons of both row sad colmms partitioning, and each
hu dL_erin8 performance; see [19] for complete detsi]_.
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Figure 11: Simplex Benchmark SCSD1

Figure 12 s and subsequent figures show the logical interaction of tuks, not the

physical transfer of data. We emphasise that complete understanding requires

performance visua_ation at all levels, hardware, system software, algorithm,

and application. By separatin 8 the levels, the performance contributions of
each level a_e manifest.

In Figure 12 the peaks represent the logarithmic combining necessary to

identify global minims. In Figure 13 the logarithmic combining appears as

lightly shaded resions in the density view and as clustered contour lines in
the contour view. Because task sero is the root of the combining tree, during

each simplex iteration it must broadcast the identity of the task containing the

global minimum. The identi_ed task then broadcasts the needed row to all other
tasks, ff the workload were perfectly distributed, each task would broadcast an

equal number of times. Excluding messages due to the logarithmic combin-

ing, all other variations in communication traffic are attributable to this load

Sln the 3._.nsion_ dJspllys, counts sTe,ter than thirty were clipped, hence the unifor-

mity.
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imbalance.Themultiplidty of views reflects our belief that an integrated per-

formance visualisation system should permit the performance analyst to select

those views that correspond to his or her personal preference and needs.

Figure 14 shows the volume of data exchanged between tasks. Comparing

Figure 14 with Figure 12 shows that tasks exchangln8 many messages do not

exchange a large volume of data. Why? The many messages necessary to

realise the combining tree are small; the row broadcasts reqnire fewer, larger
messages. The performance ramifications of this h/modal distribution of mes-

sage sises can only be understood by examining hardware and system software

performance displays. These displays show that message passing systems Like

the Intel iPSC/2 have large message preparation times relative to communica-

tion link bandwidth, penalisin 8 small messages. Hence, message count is the

important performance metric, not message volume.

Final/y, Figures 15 and 16 show the message count and volume for the column

partitioned simplex algorithm. As before, a combining tree is used to identify

81obal minima. However, as Table 2 shows, this global _ation is used only
when finding an entering basis column. Because each task contains columns,

a sequential computation is used to identify the departing basis column. This

reduces the number of small message transmissions at the expense of reduced

parallelism. More importantly, however, broadcasting matrix columns is much

less expensive than the row broadcasts of the row partitioned algorithm. The

scales for figures 14 and 16 direr significantly; this is the reason the column

partitioned variant is superior for the matrix of Figure II.

5 Current 11esearch

The hardware and application performance visualisations just described are ad

and are not integrated. First, HyperView was designed primarily to dis-

play hardware performance. As such, it is not easily extensible to display of

application performance, nor should it be -- display techniques for system and
application performance differ. Second, the simplex application visualizations

required manual instrumentation of the shnplex code and extensive preprocess-

ing before they could be displayed using ._a_emat_c_ a symbolic manipulation

system" and mathematician's assistant not intended for this use. HyperViee

and the simplex application visualization are facsimiles or rapid prototypes of

what is desired _ an integrated pe_ormance specification, instrumentation, and

visualization system for message passing systems.

Figure 17 illustrates the ides/. This hypothetical system, called Tapestry

would weave together elements of the hardware, system software, and applica-
tion levels. The hardware and system levels, shown at the top of the figure

would, like HyperVSew and Seecu/_e, dynam/cal]y display internode communi-

cation tra_c _ using multiple colors. Dynamic displays would include current

t Although the figure shows a i'om'-dimenaional hypercube, other views, such a. the PsscLl
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messages, cumulative traffic (either counts or volume), and link utilisation. Via

a mouse, the performance analyst also could choose from an extended menu of

performance displays for each node and link:

• external input/output (i.e., file accesses),

• processor utilization,

• context switches,

• system calls,

• memory utilisation,

• memory reference patterns (i.e., reference |ocalities),

• virtual memory paSin 8 activity, and

• messase counts and volume by destination.

Each of these could be displayed in a variety of formats (e.g., perspective, his-

togram, strip chart, contour, or dens/ty).
The application performance level, illustrated at the bottom of Figure 17

would display the [o_ca/graph of the intertuk communication pattern, not the

physical graph of the underlying interconnection network. By dragging graph

nodes and edges with a mouse, the topolog/cal or/entation of the graph could
be modified to reflect the performance analyst's preferences. The application

performance level, like the hardware level, would include dynamic displays of

message traffic on the parallel program graph _and via perspective, density, and
contour plots. In addition, pull-down menus for tasks would include:

• message counts and volume by destination,

• delays for message transmission or receipt,

• dynamic procedure call graphs, and

• execution profiles.

Finally, the visualisation system would permit correlation of system and appli-

cation performance.

The astute reader will have realised that near real-time processing and dis-

play of such detailed performance data (e.g., memory reference patterns) implies

prodigious, indeed unrealistic, computing, storage, a_d display requirements.

Below, we discuss those features we believe s_e necessary to achieve the goal of

an integrated performance visualisation system.

trim_nKle , Gray code, or Fl_r would be supported also.
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5.1 Instrumentation and Visualization

ThemajorlimitationofHyperView,Seecube, and the simplex application visu-

alization is the absence of near real-time behavior. A poster_oei examination of

performance data means that a/l data of potential interest must be captuzed a

p_ori. Despite the consequent increase in storage requirements, this is some-

times desirable -- it permits performsmce data browsing across the entire inter-

val of execution, and it permits data capture at a level of detail incompatible

with near real-time processing. However, a poster/or/examination also precludes

dynamic system or application reconfiguzation based on observed performance.
Real-time display of even & portion of the captured dat_ would permlt the per-

formance analyst to selectively enable and disable performance instrumentation

based on observed behavior, reducing the stor_e requirements.

Despite the mmfifest advantages of interactive performance instrumenta-

tion and display, on most message passing systems, including the Intel iPSC/2
hypercube, a po_eeior_ data display is unavoidable because there is insufll-

cient communication bandwidth to transmit performance data to an external

host without distorting the performance being measured. Moreover, the lim-

ited memory at cach node constrains the volume of performance data that can

be buffered for subsequent transmission. Clearly, hardware support for perfor-

mance data record/n 8 is crucial, and we assume its existence. However, detailed

discussion of hardware designs for performance instrumentation is beyond the

scope of this paper. See [2] for a discussion of the hardware requirements for
performance instrumentation.

A visualisation system must be evolutionary, adapting to the changing de-

mands of hardware, system software, applications, and users. Thus, the im-

plementation must be extensible, permitting addition of new display formats

and performance metrics, and portable, permitting use with a variety of sys-

tems. These twin goals, extensibility and portability, suggest a modular, object-

oriented design that separates interface from implementation. Using the X

client-server paradigm [18] would provide portability and insure future exten-

sibility based on an emerging standard for window systems. However, X alone

provides neither the necessary abstractions (e.g., hierarchical performance dis-

plays) nor the rapid prototyping support; object-oriented window libraries such
as InterViews [14] are needed.

5.2 Current Status

Based on the lessons learned with HyperView, we are implementing an initial

version of Tapeatz'y for the Intel iPSC/2 using X and In_erVJ.eu. Initially,

software instrumentation of NX/2, the iPSC/2 operating system, will provide

data on system performance; a hardware monitor will be added later. Appli-

cation performance data are captured by instrumenting application and system

libraries, by modifying a compiler to automatically instrument application code,
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andbymanuallyinsertinginstrumentationd/rectivesin applicationcode.
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